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Insertion Loss of Magnetostatic Surface
Wave Delay Lines

SHYAM N. BAJPAI, SENIOR MEMBER, IEEE, RONALD L. CARTER, MEMBER, IEEE

AND JOHN M. OWENS, SENIOR MEMBER, IEEE

.4bsfract —This paper presents an experimental and theoretical study of

the insertion loss of magnetostatic surface wave delay fine. The magneto-

static surface waves are excited by single microstrip transducer and

propagate in a delay line consisting of conductor-dielectric-YIG-GGG.

The effect of nonuniformity in microstrip current and the effect of finite

width of YfG film are included in the theory. It is seen that an undesired

notch seen in the insertion loss response of the surface wave delay line in

the low-frequency region of the band can be explained by the present

theory, which includes the finite width of the YIG film. Magnetostatic

wave delay lines have potential applications in microwave signal processing

and phased array antennas in the 1-20 GEE frequency range.

I. INTRODUCTION

I
N RECENT YEARS there has been considerable

progress in magnetostatic wave technology because of

its potential applications in several signal processing de-

vices, such as delay lines, filters, resonators, and oscillators

[1]-[4]. This technology is based on the low-loss propa-

gation of magnetostatic waves in biased yttrium iron garnet

(YIG) thin films. These films are grown epitaxially on

gadolinium gallium garnet substrates. Propagation loss as

low as 12 dB/ps at microwave frequencies has been ob-

served [1]. The magnetostatic waves are efficiently excited

by simple microstrip transducers. The initial theory and

experiment on the excitation were presented by Ganguly

and Webb [5]. Later, several more useful papers on the

excitation of magnetostatic surface waves [6]–[9] were pub-

lished. In the above publications, wave fields are assumed

uniform along the width of the YIG film. However in a

real delay line, YIG film has a finite width and thus the

fields are no longer uniform. The effect of the finite width

of YIG film on time delays has been investigated in detail

previously [1 O]. Morgenthaler and Bhattacharjee [11] have

also considered finite width in their rigorous dispersion

analysis. Adam and Bajpai have studied excitation of

magnetostatic forward volume waves in YIG stripes [12]

and interesting results were obtained. Bajpai [13] studied

the excitation of magnetostatic surface waves in finite YIG
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film using uniform microwave current in single microstrip

transducer.

This paper presents a theoretical and experimental

investigation of the insertion loss of magnetostatic sur-

face wave delay line consisting of conductor–dielectric–

YIG–GGG. Since in a decay line the YIG film has finite

width, the theory includes this finite width of YIG film. A

permanent feature of the insertion loss of this surface wave

delay line is a undesired notch (or a dip) in the lower

frequency region of the allowed frequency band. This has

always been seen in the past, but has never been explained.

This paper demonstrates that the undesired notch seen in

the lower frequency region of the allowed frequency band

can be explained on the basis of the inclusion of finite

width of YIG film. The effect of nonuniformity y in the

microwave current in the transducers is also included. It

appears that to achieve a smooth or notch-free insertion

loss of surface wave delay line one should use wider YIG

films. More study has to be conducted for achieving this.

H. THEORY

Consider the propagation of magnetostatic (MS) surface

waves in the y direction (Fig. 1). The dc magnetic field is

applied in the z direction, so that MS surface waves are

excited. The YIG film has thickness d and width W along

the z axis and is separated from conductor by a distance t.

The above configuration has been found potentially useful

in MS devices, specifically delay lines [1]–[4] based on the

propagation of MS waves in YIG thin films. The relative

permeability tensor for the YIG region can be written as

[1P jK O
p,= –jK p O

0 01

(1)

where

UO= yH u~, = 4ryM0. (2b)

In (2), H, 4m-M0, y, and o are the internal dc magnetic

field, saturation magnetization, gyromagnetic ratio, and

wave frequency, respectively.

Under magnetostatic approximation, Maxwell’s equa-

tions can be written as

vxh=O V.b=() (3)
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where b = p ~p ,“ h, pO is the permeability of free space,

and h = v+, tj being the magnetic p?tenti~. Assuming

that the magnetic potential vanishes [10] at the surface

Z = i- W/2, the Z dependence of the t)’s can be expressed

as [e. sin(Kzz) + (1 – em)cos K= Z], where K= = rim-/W. Here
n=l,3,5,. . . , e. = 1 or O depending on whether n is even

or odd, respectively. Thus the wave magnetostatic poten-

tial ~ varies as [e~sin(Kzz)+(l– eH)cosKzz]e~f@t–~S~),

where ~ is the wavenumber and s = + 1 is for propagation

along the + y direction.

Following Ganguly and Webb [5] and Sethares [8], the

magnetostatic potential (ignoring time dependence) in dif-

ferent regions can be expressed as

. [e. sk(Kzz)+ (l- e.)cos(~zz)] e-jBs>@

. [e~sin(KZz)+ (l- e.)cos(K,z)] “PSyd~

+(2) = y
/[

+ wEneK.x+ Fne - ‘.x]

~=1 —co

. [e. sk(Kzz)+ (l- e.)cos(K=z)]e-jB’y@. (4)

In (4),

(5)

Kd=(p*+Ky. (6)

x

t

Microstrip

///// /

-d
0’

~w ~

Fig. 1. Schematic of magnetostatic surface wave delay line,

given as

10 otherwise

Here b is the width of the microstrip, and nonuniform

microwave current in microstrip has been assumed [14] as

10=~ ‘%z(y)dy.
-Gc

The normal components of wave magnetic induction (bX’s) and the tangential component of magnetic fields (h ,’s) in

different regions can be obtained from (4) as

ff”=po ~ ~+m&[En~Kdx– F~e-K’x] [e~sin(K=z)+(l– e.)cos(KZz)] e-JflSydP (7)
~=1 —CO

and

h(i)= –js ~ fm@[CneKfx+Dne-K/x
) ] [e.sin(K#)+(l- en)cos(~zz)]e-’~~’@

?Z=l—’x

A(2)== –j,s ~ ~+~fl[E,,e~~x+F~e
), ‘x-~x] [etisi*(K:z)+ (l- e,l)cos(K=z)]e-’p’Y dfl. (8)

)7=1 –~

The arbitrary constants are evaluated in terms of DH. At x = O, (9J yields

Usual boundary conditions are applied; i.e., b.’s and hp’s

should be continuous at the interfaces except that – js ~ \ ~ ‘~~~( u, ~) D,,e-J@J’

h:)–k~!)=l(y) atx=O (9) ‘
,,=1 --’X

where ~:(y) is the current distribution in microstrip and is .[e,lsin(K,z)+(l- en)cos(KZz)] dp=J-(.Y) (10)
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where

<: U, fi)Dn=E,, + F.-C.-D..

Equation [10] is now multiplied by [em sin(nzvz/W)+(l –

em) cos (m nz/ W)] and e~~”y and integrated over z and y.

Using the condition that

“[esin(mmil+(’-em)cos(m~i)ldz
. ~dm, n (11)

we obtain

D,, =
jJ,(~)e-2~1~

2@F~(ti,~)
(12)

where

“[esin(n+j+@eJcOs(’z+Jldz
The dispersion relation is obtained by equating F~( u, ~)

to zero; thus

e–2K, d=
T[(pKf+ sBK)+Kdtanh(Kdf)]

(pKf - s~K)- K,tanh(K,t)
(14)

where

(pKf -.~K)+K.

‘= (pKf+spK)-Kd”
(15)

After following [8] the magnetic potentials in different

regions are obtained by substituting arbitrary constants

into (4).

The microwave power flowing in different regions has

been obtained as [15]

‘=RealpartOfro:*b)‘1”
where $ * is complex conjugate of ~,

potential. The total power (per unit

sample) is obtained by integrating (16)

and is obtained as
m

~=1

where

– LZSPOlG.12 ~
Pn =

4fiK~ “

the wave magnetic

width of the YIG

in different regions

(17)

Here Pn represents the total power (per unit width) flowing

in the n th mode in the delay line structure (Fig. 1):

(T+1)2

2
(19)

[

(PKf+spK)Te(Kfd)-(pKf-s~K)e(-~”) ‘

K~ sinh ( K.t ) 1
[

sinh(2K~t) KJ
+—

4 2 1 (20)

~,(ff)e(-K/d)
Gt, = JF

d/3T
dFT
~= Q1+Q2+Q3+Qq (22)

[

(pKf+s~K)T- (pKf-s~K)e(-’~t’)
Q,=

K:
i

./3tcosech2 ( Kdt ) (23)

2&je(-2K, ~)

[

(pKf - sj3K)coth(KJt) (24)
Q2 = l–

K/ K~ 1

~,[(pKf-sKP)e(-2~’’- (pKf+s8K)T]

\

——

d

/

. coth(K~t) (25)

Qo= _ ~+ (pKf+s~K)coth(Kdr) dT

[ 1- d~
(26)

K~

-i — VK I

/.—.ilT K/ 1 ‘~ “-’J

~~ = [(pKf+s/3K)-ICd]2 “
(27)

The radiation resistance R,, (per unit width of YIG) for

the n th mode is defined as

p,, = ~R,,I;. .
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Also,

Rtrt= [lRn+l+ lRn-1]~ (28)

where the + and – signs indicate the + y and – y

propagating wave, respectively, and R., is the total radia-

tion resistance. Finally the radiation resistance for the n th

mode can be expressed as

— usp Oe_ll-K’d~nL(P)2
R,l =

dF~ 2 Io “

2PK’ d~

In the above equation

Z(P) 2 42 f(p) 2

() –10 ‘G I.

where n is odd and

(29)

(30)

The insertion loss is obtained as

(Rg+%,,,)2+(%,,, + X,)2
1. L.=2010g

4RgR+

+Propagation Loss. (31)

In (31), R ~ is the source resistance (50 Q); R ~Ot,land XtOt.l

are the total radiation resistance and total radiation reac-

tance summed over all the modes; X,= 97 sin (POW); /30=

21r/y, where y is the guide wavelength; and R+ is the

radiation resistance of the plus propagating wave in the

lowest order wave. Propagation loss was obtained as 76.4

x Ah x ~~; where Ah is the line width of YIG and r~ is the

group delay time in microseconds.

III. RESULTS

Experimental and theoretical results were obtained and

compared using 3-mm-wide and 27.4-N m-thick YIG film.

The transducers were 3 mm long and 50 ~m wide and were

short-circuited at one end defined in gold on 250-pm-thick

alumina substrate. The separation between the transducers

was 1 cm.

Fig. 2 shows the comparison between the insertion loss

obtained from theory and experimental measurements.

The measurements were made on an HP automatic net-

work analyzer. The curve x X X X has been obtained

considering that the width is infinite; hence fields are

uniform. The difference between the results of insertion

loss obtained from theory when the YIG film width(W) is

.
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Fig, 2. Variation of measured and calculated insertion lOSS (S21 in dB)

with frequency using different models: ——— experiment; ---- theory

( }V finite); x x x x theory (w infinite). The frequency which sep-
arates surface wave and volume wave frequency bands is atso shown by
arrow.

finite (curve ----) and when the YIG film width is infinite

(x x x x curve) can be seen clearly in the low-frequency

region of the band. As is obvious from the figure, the

theoretical results for finite width show a dip or an unde-

sired notch in the low-frequency region of the band of the

surface wave delay line. This gives qualitatively and

quantitatively closer agreement with experimental results;

whereas the model which assumes infinite width of the

YIG film has a very large insertion loss and shows no

notch in the low-frequency region, as seen in the experi-

ment. Below the surface wave region, a very small frequency

band also exists, where volume waves propagate. In this

region also the theoretical results are in good agreement

with the measurements.

IV. CONCLUSIONS

A study of the insertion loss of magnetostatic surface

wave delay line has been presented. An insertion loss

expression including the finite width of YIG was derived.

Insertion loss of magnetostatic surface wave delay line

utilizing a conductor–dielectric–YIG–GGG structure was

also measured. It was seen that the effect of finite width is

quite obvious in the low-frequency region of the band. The

theoretical results in terms of insertion loss are in good

agreement, specifically in the low-frequency region of the

allowed frequency band. An undesired notch observed in

the low-frequency region of the insertion loss response of

magnetostatic surface wave delay lines has been found to

be due to the finite width of YIG film.
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